
Selective Buddy Allocation for Scheduling Parallel Jobs on Clusters
�

Vijay Subramani
�

Rajkumar Kettimuthu
�

Srividya Srinivasan
�

Jeanette Johnston
�

P. Sadayappan
�

Abstract
In this paper, we evaluate the performance implications

of using a buddy scheme for contiguous node allocation,
in conjunction with a backfilling job scheduler for clusters.
When a contiguous node allocation strategy is used, there
is a trade-off between improved run-time of jobs (due to re-
duced link contention and lower communication overhead)
and increased wait-time of jobs (due to external fragmen-
tation of the processor system). Using trace-based simu-
lation, a buddy strategy for contiguous node allocation is
shown to be unattractive compared to the standard non-
contiguous allocation strategy used in all production job
schedulers. A simple but effective scheme for selective
buddy allocation is then proposed, that is shown to per-
form better than non-contiguous allocation.

1 Introduction
Job schedulers for clusters and parallel computer sys-

tems generally do not take system topology and node prox-
imity considerations into account when making scheduling
decisions for parallel jobs [6, 8, 20]. The available pro-
cessors are generally maintained in a free-list - they are
removed from the free-list for allocation to new jobs, and
added back to the free-list when jobs complete and release
their processors. Currently, the allocation of nodes to jobs
on the Cplant system at Sandia National Laboratories [18]
also does not take node proximity into account when allo-
cating nodes to parallel jobs. However there is evidence
that for some communication-intensive parallel programs,
a contiguous node allocation can result in up to a 40% re-
duction in execution time. Thus it is of interest to con-
sider the implications of contiguous node allocation on job
scheduling.

There is a fundamental trade-off involved when a con-
tiguous node allocation strategy is used for scheduling of
parallel jobs instead of the current practice of arbitrary
non-contiguous node allocation in production job sched-

�
Supported in part by a grant from Sandia National Laboratories�
Dept. of Computer and Info. Science, Ohio State University, Colum-

bus, OH 43210, � subraman,kettimut,srinivas,saday � @cis.ohio-state.edu�
MS 1110, Sandia National Laboratories, Albuquerque, NM 87185-

1110, jjohnst@mp.sandia.gov

ulers: The run-times of jobs can be expected to decrease
when a contiguous node allocation strategy is used, due
to decreased link contention between independent concur-
rently executing jobs in the system. The extent of im-
provement can be quite different for the jobs in the mix -
communication-intensive jobs will benefit the most, while
parallel jobs with very little communication will see no
noticeable reduction in execution time. The wait-times
for jobs can be expected to increase, due to external frag-
mentation. External fragmentation exists when a sufficient
number of processors are available to satisfy a request, but
they cannot be allocated contiguously. With some contigu-
ous allocation strategies that restrict the sizes of allocated
processor groups, there may also be wasted processor cy-
cles due to internal fragmentation (when more processors
are allocated to a job than it requests).

The effectiveness of a contiguous node allocation strat-
egy is thus clearly dependent on which of the above effects
is more dominant. Since the two goals of reduced run-
time and reduced wait-time are conflicting, our challenge
is to design a strategy that achieves a reduction in over-
all turn-around time. There has been considerable prior
research into each of the two topics of Scheduling of par-
allel jobs [5, 17] and contiguous node allocation strategies
[1, 2, 3, 9, 12, 21].

There have also been a few studies that have considered
both these issues in combination [10, 14, 16]. However,
only [14] addresses the impact of contiguous node alloca-
tion schemes in conjunction with a job scheduling policy
that takes fairness into consideration - by use of a FCFS
(First Come First Served) scheduling policy.

In [14], contiguous and non-contiguous node allocation
schemes for mesh-connected systems were evaluated in
conjunction with a job scheduler. Both simulation-based
evaluation and experimental measurements on an Intel
Paragon parallel system were performed. The simulation-
based evaluation first involved a fragmentation study,
where synthetic job streams with different distributions
were evaluated at different simulated loads. Here, commu-
nication costs were not modeled. The conclusion was that
contiguous allocation schemes suffered considerably from



external fragmentation and consequent poor system uti-
lization. Then, simulation-based message-passing exper-
iments were performed, where the simulator was extended
to model communication costs and contention during inter-
processor communication. Programs with different com-
munication patterns were evaluated, including some of the
NAS benchmarks. The conclusion was that a multiple-
buddy strategy was best, performing better than fully con-
tiguous allocation schemes and random non-contiguous al-
location. Finally, experimental evaluation on a parallel
Intel Paragon system was performed. Compared to the
simulation-based results, the experimental measurements
on the Paragon system did not reveal much benefit from
using a partially contiguous allocation.

In this paper, we address the same issues as in [14].
However, there are some important differences: Their
study did not vary the communication parameters, but in-
stead used fixed parameters corresponding to a single sys-
tem. Since the effectiveness of contiguous allocation will
depend heavily on the run-time improvement, it is of in-
terest to perform evaluations under different assumptions
about the communication overhead. The previous study
treated all jobs equivalently, with respect to the node allo-
cation strategy. As we show later, the effectiveness of con-
tiguous node allocation is greatly enhanced by applying it
selectively to jobs.

Using data from a job trace collected at the Cornell The-
ory Center [4], we demonstrate that a selective buddy allo-
cation scheme used in conjunction with EASY backfilling
[13, 17, 19] is consistently superior to the traditional non-
contiguous node allocation strategy. The rest of the paper
is organized as follows. In Section 2, we provide some
background and motivation for this work. In Section 3,
we evaluate a buddy node allocation policy and discuss its
shortcomings. A selective buddy allocation scheme is pro-
posed in Section 4, and evaluated first under the assump-
tion of perfect user estimation of job run-times. In Section
5, we present simulation data using actual user estimates
of job runtime. Related work is discussed in Section 6 and
conclusions are provided in Section 7.

2 Background and Motivation
Scheduling is usually viewed using a 2D chart with time

along the horizontal axis and the number of processors
along the vertical axis. Each job can be thought of as a rect-
angle whose length is the user estimated run time and width
is the number of processors required. The simplest way to
schedule jobs fairly is to use the First-Come-First-Served
(FCFS) policy. This approach suffers from low system
utilization. Backfilling [5, 17] was proposed to improve
the system utilization and has been implemented in several
production schedulers [8]. Backfilling works by identify-
ing holes in the 2D chart and moving forward smaller jobs
that fit those holes. There are two common variations to

backfilling - conservative and aggressive. In conservative
backfilling, a smaller job is moved forward in the queue
as long as it does not delay any previously queued job.
In aggressive backfilling, also known as EASY backfilling
[13, 19], a small job is allowed to leap forward as long as it
does not delay the job at the head of the queue. Backfilling
thus allows significant improvement in system utilization
without sacrificing fairness.

The common metrics used to evaluate the performance
of scheduling schemes are the average turnaround time and
the average bounded slowdown [17]. We use these metrics
for our studies. The bounded slowdown of a job is defined
as follows:

Bounded Slowdown = (Wait time + Max(Run time,
10))/ Max(Run time, 10)

The threshold of 10 seconds is used to limit the influ-
ence of very short jobs on the metric.

For communication intensive (CI) jobs, network con-
tention is a significant bottleneck. If the nodes allocated
to a CI job are not contiguous (i.e., the nodes are on dif-
ferent switches) and if the hop distance is relatively high,
then the messages exchanged between those nodes have to
pass through several links and may have to contend with
the messages from other CI jobs. Instead, if we allocate
the job to nodes on the same switch or to nodes with a low
hop distance between them, network contention can be re-
duced, thereby improving the runtime for those jobs. We
performed some experiments using the NAS FFT parallel
benchmark to evaluate the amount of benefit that can be ob-
tained from contiguous node allocation when compared to
random node allocation. The experiments were performed
on the toroidal mesh-connected Cplant system at Sandia
National Laboratory [18].

Time Taken
Set Contiguous Non Contiguous
1 0:01:37 0:02:38
2 0:01:33 0:02:40
3 0:01:35 0:02:35
4 0:01:33 0:02:42
5 0:01:36 0:02:39
6 0:01:36 0:02:38
7 0:01:33 0:02:39
8 0:01:33 0:02:39

Table 1. Execution time for FFT with Contiguous
vs. Non-contiguous node allocation.

Eight sets of 16 node FFT’s were run concurrently on a
128 node mesh connected system. The table above shows
the time taken for the FFT application with contiguous and
non-contiguous node allocation. For the contiguous node
allocation, each job was assigned contiguous nodes on a



mesh row. For the non-contiguous node allocation, the
nodes were assigned randomly. It can be observed that
more than 40% improvement in runtime can be obtained
with contiguous node allocation. But the percentage im-
provement in runtime is very dependent on the nature of the
application. So, we study the impact of contiguous node al-
location assuming different percentages of improvement in
job runtime.

From the collection of workload logs available from
Feitelson’s archive [4], the CTC workload trace was used
to evaluate the proposed schemes. This trace was generated
by a 430-processor system (a subset of jobs spanning a pe-
riod of one month from the entire trace of jobs was used
for the experiments, in order to reduce the total simula-
tion time required). The trace contains the actual execution
time as well as the wall-clock limit requested by the user
for each job. Under normal load, with aggressive back-
filling, using FCFS as the scheduling priority, the utiliza-
tion was 51 percent. Although schedulers in practice can
only make scheduling decisions based on the wall-clock
limit provided by the user, we first carry out our simula-
tion experiments using the actual job runtime as the basis
for decisions. This to get a clear understanding of the is-
sues under investigation, without any effects that may be a
consequence of inaccuracy of estimates by the user. Later
in Section 5, we conduct simulation experiments where
the user-specified wall-clock limit is used as the basis for
scheduling decisions (but the actual recorded job runtime is
used to determine when the simulated job execution termi-
nates, so that the simulation can model what would happen
in reality)

3 Evaluation of Buddy Node Allocation
As discussed earlier, the effectiveness of a contiguous

node allocation scheme in a space-shared cluster environ-
ment will depend on the extent of improvement of job
run-times when they are allocated to contiguous processors
rather than to arbitrary processors in the system. If the im-
provement in runtime is relatively small, the increase in job
wait-times can be expected to exceed the reduction in exe-
cution time, rendering contiguous node allocation unattrac-
tive. On the other hand, if the reduction in job execution
time were very large, the overall turn-around time would
decrease despite an increase in wait time.

In this section, we evaluate the effectiveness of a buddy
scheme for contiguous node allocation, under different as-
sumptions about the extent of run-time improvement from
contiguous node allocation. We first simulate the schedul-
ing and execution of jobs in the CTC trace using the de-
fault non-contiguous node allocation strategy, and EASY
Backfilling. The free processors of the system are placed
in a linked list. When a new job is scheduled, the needed
number of processors are removed from the free list and
allocated to the job. When a job completes execution, the

processors are freed and inserted into the free list. Thus no
consideration is given to the relative physical proximity of
processors when node allocation is performed.

Next, we simulate the scheduling and execution of jobs
using a buddy scheme for node allocation. A brief descrip-
tion of the scheme is provided below.

The list of buddies is maintained as a binary tree in
which the size of the root buddy is equal to size of the sys-
tem. The sum of the sizes of its two child buddies is equal
to its size. All the leaf buddies are of size one. Each buddy
contains a list of time intervals in which it is free.

Nodes are allocated to the jobs in the following manner

� The smallest buddy is chosen such that the number of
nodes in the buddy is at least equal to the number of
nodes requested by the job.

� If there are many choices, one with the earliest start
time is chosen.

� In case of a tie, a buddy is chosen with the smallest
value for ’largest buddy of which it is a part of’ (to
reduce external fragmentation).

� The free time list for the selected buddy and all its
children and parent buddies are updated.

Simulations were performed under different assump-
tions about the improvement in run-time with contiguous
allocation. For example, if the improvement factor is 10%,
the execution time of the job under a contiguous node al-
location is made 10% less than the execution time with the
arbitrary non-contiguous allocation.

Fig. 1 indicates that the Buddy allocation scheme re-
sults in a decrease in the average slowdown only when a
50% improvement in runtime is assumed for contiguous al-
location. Fig. 2 indicates that the Buddy allocation scheme
results in a decrease in the average turnaround time only
if there is 25% or higher improvement in runtime due to
contiguous allocation.

Buddy vs Non contiguous allocation

0

1

2

3

4

5

6

7

5 10 25 50

% Improvement in Runtime

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous 

Buddy

 

Figure 1. Comparison of average slowdowns of
jobs under the Buddy allocation scheme and-
Non contiguous allocation scheme.



Buddy vs Non contiguous allocation

0

2000

4000

6000

8000

10000

12000

14000

5 10 25 50

% Improvement in Runtime 

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 T

im
e

Non Contiguous 

Buddy

 

Figure 2. Comparison of average turnaround
times of jobs under the
Buddy allocation scheme and Non-contiguous
allocation scheme.

In practice, it is extremely unlikely that all jobs in the
system are communication intensive and thereby able to
benefit from contiguous node allocation. So we next car-
ried out a simulation where we assumed that only 15% of
the jobs were communication intensive. In this case, only
the communication intensive jobs were allocated contigu-
ous nodes, while the other jobs were allocated nodes with-
out requiring them to be contiguous.

 

Buddy allocation with 15% CI Jobs

0

5

10

15

20

25

5 10 25 50

% Improvement in Runtime for 
the CI Jobs 

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous NCI
Jobs

Buddy NCI Jobs

Non Contiguous CI Jobs

Buddy CI Jobs

Figure 3. Comparison of the average slow-
downs of the Communication Intensive (CI) and
Non-communication Intensive (NCI) jobs un-
der the Buddy allocation scheme and Non-
contiguous allocation scheme.

Fig. 3 and 4 show that the performance of the commu-
nication intensive jobs has deteriorated considerably, when
compared to Fig. 1 and 2. The reason for this became
clear when we examined the simulation data more closely.
When all jobs are considered communication-intensive (re-
sults in Fig. 1 and 2), there is effectively a decrease in
the offered load (total utilized processor-seconds for all
jobs combined) when contiguous allocation is used. When
only 15% of the jobs are communication-intensive, there is
much less decrease in the offered load since only a small
fraction of the jobs now have reduced running times. From

Buddy allocation with 15% CI Jobs

0

5000

10000

15000

20000

5 10 25 50

% Improvement in Runtime for the 
CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 T

im
e

Non Contiguous NCI
Jobs

Buddy NCI Jobs

Non Contiguous CI Jobs

Buddy CI Jobs

 

Figure 4. Comparison of the av-
erage turnaround times of the CI and NCI jobs
under the Buddy allocation scheme and Non-
contiguous allocation scheme.

Fig. 3 and 4, the prospects for contiguous node alloca-
tion schemes do not look very good when the fraction of
communication intensive jobs is low. However, as we ex-
plain in the next section, by using a selective strategy for
contiguous node allocation, it is possible to significantly
improve performance.

4 A Selective Buddy Allocation Strategy
An examination of the turnaround times of jobs with the

buddy allocation strategy revealed that even when the av-
erage slowdown was worse than the non-contiguous case,
there were indeed several jobs whose slowdown improved
considerably. In general, long jobs had lower average slow-
down and tended to show improvement, while short jobs
had higher slowdown and got worse under contiguous al-
location. In retrospect, this was to be expected. Those jobs
that had a relatively high slowdown under non-contiguous
allocation had very little likelihood of improving with a
contiguous allocation. This is because their turnaround
time is dominated by the wait-time. Thus, with a contigu-
ous node allocation, there is very limited potential for a
decrease in turnaround time through decrease in run-time,
and it is unlikely to compensate for the increased wait
time. In contrast, jobs that have relatively low (close to
1.0) slowdown under non-contiguous allocation have their
turnaround time dominated by execution time; with a con-
tiguous allocation, these jobs have much better prospects
for decreased turnaround time.

These observations prompted consideration of a selec-
tive buddy allocation strategy: use contiguous allocation
selectively, only for those jobs whose expected turnaround
time with contiguous allocation is lower than with non-
contiguous allocation. When a job is to be scheduled, the
two possibilities are both evaluated - contiguous allocation,
with a longer expected wait time but lower run time; and
non-contiguous allocation, with lower wait time, but longer
run time. A choice of contiguous or non-contiguous alloca-



 

Selective Buddy allocation with 15% CI Jobs

0

1

2

3

4

5

5 10 25 50

% Improvement in Runtime for 
the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous NCI
Jobs

Selective Buddy NCI
Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

 

Selective Buddy allocation with 30% CI Jobs

0

1

2

3

4

5

5 10 25 50

% Improvement in Runtime for 
the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous NCI
Jobs

Selective Buddy NCI
Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

 

Selective Buddy allocation with 60% CI Jobs

0

1

2

3

4

5

5 10 25 50

% Improvement in Runtime for 
the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous NCI
Jobs

Selective Buddy NCI
Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Figure 5. Comparison of the average slowdowns of the CI and NCI jobs under the Selective Buddy alloca-
tion scheme and Non-contiguous allocation scheme.

 

Selective Buddy allocation with 60% CI Jobs

0

5000

10000

15000

20000

5 10 25 50

% Improvement in Runtime for 
the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 T

im
e

Non Contiguous NCI
Jobs

Adaptive Buddy NCI
Jobs

Non Contiguous CI
Jobs

Adaptive Buddy CI
Jobs

 

Selective Buddy Allocation with 30% CI Jobs

0
2000
4000
6000
8000

10000
12000
14000

5 10 25 50

% Improvement in Runtime for 
the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 T

im
e

Non Contiguous NCI
Jobs

Adaptive Buddy NCI
Jobs

Non Contiguous CI
Jobs

Adaptive Buddy CI
Jobs

 

Selective Buddy Allocation with 60% CI Jobs

0

5000

10000

15000

20000

5 10 25 50

% Improvement in Runtime for 
the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 T

im
e

Non Contiguous NCI
Jobs

Adaptive Buddy NCI
Jobs

Non Contiguous CI
Jobs

Adaptive Buddy CI
Jobs

Figure 6. Comparison of the average turnaround times of the CI and NCI jobs under the Selective Buddy
allocation scheme and Non-contiguous allocation scheme.



tion is made dynamically, based on estimated completion
time with the two choices. The simulation results below
show that this simple selective strategy is effective, even
when the fraction of CI jobs is relatively small.

Fig. 5 shows the average bounded slowdown for the
jobs under the selective buddy scheme. When the trace
contains 15% CI jobs, the selective scheme reduces the
slowdown of both the CI and NCI jobs. The percent im-
provement in slowdown for the CI jobs increases as the
percentage improvement in runtime for those jobs is in-
creased. Similar trends are observed with 30% and 60% of
jobs being communication intensive jobs.

Fig. 6 shows the turnaround time for the jobs under this
scheme. It can be observed that this scheme improves the
turnaround time of the CI jobs without adversely affecting
the NCI jobs. It also improves the turnaround time of the
NCI jobs as the percentage improvement in the runtime
increases. This is because the reduction in runtime for the
CI jobs also has the side-effect of reducing the overall load
in the system, thereby benefitting the NCI jobs too.

Thus the selective buddy scheme outperforms the non
contiguous allocation scheme even for moderate amounts
of improvement in runtime and even when only a small
percentage of the jobs are communication intensive.

5 Evaluation with User Estimates of Job
Run-time

We have so far assumed that the user estimates of run-
time are perfect. Now, we consider the effect of user
estimate inaccuracy on the Selective Buddy Allocation
scheme. Fig. 7 shows that for 15% CI jobs, as we increase
the percentage improvement in runtime for the CI jobs, the
average turnaround time for these jobs decreases with the
selective buddy scheme. But from Fig. 8 it can be observed
that slowdown for the CI jobs is worse with the selective
scheme even with higher percentage improvement in run-
time.

Selective Buddy allocation with 15% CI Jobs

0
2000
4000
6000
8000

10000
12000
14000

5 10 25 50

% Improvement in Runtime for the 
CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 T

im
e

Non Contiguous NCI
Jobs

Selective Buddy NCI
Jobs

Non Contiguous CI Jobs

Selective Buddy CI Jobs

 

Figure 7.Comparison of the average turnaround
times of the CI and NCI jobs under the Selective
Buddy allocation scheme and Non contiguous
allocation scheme.

Selective Buddy allocation with 15% CI Jobs

0

2

4

6

8

10

5 10 25 50

% Improvement in runtime for the 
CI jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous NCIJobs

Selective Buddy NCI
Jobs

Non Contiguous CI Jobs

Selective Buddy CI Jobs

 

Figure 8. Comparison of the average slow-
downs of the CI and NCI jobs under the Selec-
tive Buddy allocation scheme and Non contigu-
ous allocation scheme.

We believe that this is due to abnormally aborted jobs
and the jobs with higher over-estimation factor, which tend
to excessively skew the average slowdown of jobs in a
workload. Consider a job requesting a wall-clock limit of
24 hours, that is queued for 1 hour, and then aborts within
one minute due to some fatal exception. The slowdown
of this job would be computed to be 60, whereas the av-
erage slowdown of normally completing long jobs is typ-
ically under 2. If even 5% of the jobs have a high slow-
down of 60, while 95% of the normally completing jobs
have a slowdown of 2, the average slowdown over all jobs
would be around 5. In order to verify our conjecture that
the worse slowdown for CI jobs with the selective buddy
scheme is due to poorly estimated jobs, we group the jobs
into two different estimation categories. One category con-
tains jobs that are well-estimated (the estimated time is not
more than twice the actual runtime of that job) and badly
estimated jobs (the estimated runtime is more than twice
the actual runtime).

From the Fig. 9 and 10 it can be observed that the se-
lective buddy scheme improves turnaround times of the
CI jobs in both the categories (good and bad estimators).
Fig. 9 show that the average slowdown for the CI jobs in
the good estimators category improves with the selective
buddy scheme and trends are very similar to that observed
in the previous section with simulations using the actual
run-time as estimate.

For the poorly estimated jobs, the average slowdown for
CI jobs worsens with the selective buddy scheme. This is
due to the fact that these jobs are badly estimated i.e, these
jobs finally end up as short jobs, but they are considered
as long jobs by the scheduler implementing the selective
buddy scheme. These jobs are made to wait to get a better
turnaround time via a contiguous allocation, but they com-
plete much earlier than expected. Thus their longer wait
to get a contiguous allocation does not pay off since their
runtime is much less than predicted. This effect of the se-



 

Selective Buddy Allocation with 15% CI Jobs
(Bad Estimators)

0
3
6
9

12
15

5 10 25 50

% Improvement in Runtime 
for the CI Jobs

A
ve

ra
g

e
 S

lo
w

d
o

w
n

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 30% CI Jobs
(Bad Estimators)

0
3
6
9

12
15

5 10 25 50

% Improvement in Runtime 
for the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n Non Contiguous

NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 60% CI Jobs
(Bad Estimators)

0
2
4
6
8

10

5 10 25 50

% Improvement in Runtime 
for the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 15% CI Jobs
(Good Estimators)

0

1

2

3

5 10 25 50

% Improvement in Runtime 
for the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 30% CI Jobs
(Good Estimators)

0

1

2

3

5 10 25 50

% Improvement in Runtime 
for the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 60% CI Jobs
(Good Estimators)

0

1

2

3

5 10 25 50

% Improvement in 
Runtime for the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n Non Contiguous

NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Figure 9. Comparison of the average slowdowns of the well estimated and the poorly estimated jobs (CI
and NCI) under the Selective Buddy allocation scheme and Non-contiguous allocation scheme.



 

Selective Buddy Allocation with 15% CI Jobs
(Good Estimators)

0

10000

20000

30000

5 10 25 50

% Improvement in 
Runtime for the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 

T
im

e

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 30% CI Jobs
(Good Estimators)

0

10000

20000

30000

5 10 25 50

% Improvement in 
Runtime for the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 

T
im

e

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 60% CI Jobs
(Good Estimators)

0

10000

20000

30000

40000

5 10 25 50

% Improvement in 
Runtime for the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 

T
im

e

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 30% CI Jobs
(Bad Estimators)

0

2000

4000

6000

5 10 25 50

% Improvement in Runtime 
for the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 

T
im

e

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 60% CI Jobs
(Bad Estimators)

0

2000

4000

6000

5 10 25 50

% Improvement in Runtime 
for the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 

T
im

e

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 15% CI Jobs
(Bad Estimators) 

0
1000
2000
3000
4000
5000

5 10 25 50

% Improvement in Runtime 
for the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 

T
im

e

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Figure 10. Comparison of the average turnaround times of the well estimated and the poorly estimated
jobs (CI and NCI) under the Selective Buddy allocation scheme and Non-contiguous allocation scheme.

 

Selective Buddy Allocation with 15% CI Jobs
(Bad Estimators)

0
3
6
9

12
15

5 10 25 50

Average % Improvement in 
Runtime for the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 15% CI Jobs
(Good Estimators)

1.3

1.4

1.5

1.6

1.7

5 10 25 50

Average % Improvement in 
Runtime for the CI Jobs

A
ve

ra
g

e 
S

lo
w

d
o

w
n

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Figure 11. Comparison of the average slowdowns of the well estimated and the badly estimated jobs (CI
and NCI) under the Selective Buddy allocation scheme and Non contiguous allocation scheme assuming
a non-uniform percentage improvement for the CI jobs.



 

Selective Buddy Allocation with 15% CI Jobs
(Good Estimators) 

0
5000

10000
15000
20000
25000
30000

5 10 25 50

Average % Improvement in 
Runtime for the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 

T
im

e

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Selective Buddy Allocation with 15% CI Jobs
(Bad Estimators)

0
1000
2000
3000
4000
5000
6000

5 10 25 50

Average % Improvement in 
Runtime for the CI Jobs

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 

T
im

e

Non Contiguous
NCI Jobs

Selective Buddy
NCI Jobs

Non Contiguous CI
Jobs

Selective Buddy CI
Jobs

Figure 12. Comparison of the Average Turnaround Time of the Well and Badly Estimated Jobs (CI and NCI)
under the Selective Buddy Allocation and the Non Contiguous Allocation Schemes assuming non-uniform
percentage improvement for CI Jobs.

lective buddy allocation scheme may actually be desirable
- it would encourage users to better estimate their job exe-
cution time, since poorly estimated jobs tend to suffer with
respect to their wait-time!

5.1 Variable Percentage Improvement
So far we have assumed uniform percentage improve-

ment in runtime for all the CI Jobs. But that assumption
is not realistic so we now study the impact of the selective
buddy allocation strategy assuming non-uniform percent-
age improvement in runtime for the CI Jobs i.e, given a per-
centage improvement X, we randomly assign the percent-
age improvement in runtime for the CI jobs in the range
between 0 and 2X.

From Fig. 11 it can be observed that the selective buddy
scheme improves the slowdowns of both the CI and NCI
jobs for the good estimators. It can also be observed that
the poorly estimated jobs slightly suffer. A similar trend
is observed for the average turnaround time. This can be
observed from Fig. 12. Thus, the Selective Buddy Allo-
cation strategy outperforms the non contiguous allocation
even when the CI jobs have variable improvements in their
run-times.

6 Related Work
Several algorithms have been proposed previously for

contiguous node allocation on hypercube and mesh com-
puters. The Buddy strategy has been widely studied in the
past [1, 3, 9]. Several studies [2, 12, 21] have focused on
node allocation strategies for mesh connected systems. A
fragmentation free allocation strategy for mesh connected
parallel computers that minimizes message passing con-
tention is presented in [7]. [15] presents a strategy that
minimizes network contention due to both communication
and I/O traffic. All the above studies focus exclusively on
the topic of contiguous node allocation schemes, but do
not address the issue of job scheduling onto the parallel
systems.

The studies in [10, 16] focus on job scheduling tech-
niques for improving the performance of hypercube com-
puters. In [10], the roles of processor allocation and job
scheduling in improving the performance of hypercube
computers are compared. A new scheduling algorithm is
proposed for improving the average response time of jobs
and for improving the system utilization. A primary con-
clusion of the paper is that job scheduling considerations
play a much more significant role in determining perfor-
mance than the particular contiguous allocation strategy
used. Further, it was concluded that there is very little
advantage to using very sophisticated contiguous node al-
location schemes instead of a very simple contiguous al-
location scheme. In [16], a scheduling algorithm is pre-
sented for hypercube systems which provides greater im-
provements compared to the Scan algorithm of [10].

The scheduling algorithms in [10, 16] do not incorpo-
rate any fairness considerations. They would permit a later
arriving job to be started at a time that it would be feasi-
ble to start an earlier arriving job, if it improved system
utilization. Fairness is a highly desirable consideration in
practical scheduling algorithms. For this reason, most pro-
duction schedulers use some variation of backfilling along
with a FCFS priority scheme. In this work, we consider the
issue of contiguous node allocation in conjunction with a
standard backfilling job scheduler, so that fairness consid-
erations remain unchanged.

The approach considered in this paper either allocates
a fully contiguous partition for a job, or an arbitrary col-
lection of nodes (if the greater wait-time to acquire a fully
contiguous partition exceeds the expected reduction in run-
time). It may be of interest to consider allocations in be-
tween these two extremes, i.e. node allocations that are not
fully contiguous, but nevertheless exhibit a high degree of
proximity. Such as approach to node allocation has been
pursued by Leung et. al. [11].



7 Conclusions
In this paper, we have addressed the issue of contigu-

ous allocation in conjunction with a backfilling job sched-
uler. The relative performance (using average job slow-
down and average turnaround time of jobs) for contiguous
versus non-contiguous node allocation was characterized
for different scenarios. A simple but effective selective
buddy scheme was proposed, and demonstrated to have
good performance relative to the standard non-contiguous
node allocation strategy.

References
[1] M. Chen and K. G. Shin. Processor allocation in an n-

CUBE multiprocessor using gray codes. IEEE Transaction
on Computers, C(36):1396–1407, 1987.

[2] P. Chuang and N. Tseng. An efficient submesh allocation
strategy for mesh computer systems. In Proceedings of the
11th International Conference on Distributed Computing
Systems, pages 256–263, 1991.

[3] S. Dutt and J. P. Hayes. Subcube allocation in hypercube
computers. IEEE Transaction on Computers, 40(3):341–
352, 1991.

[4] D. G. Feitelson. Logs of real
parallel workloads from production systems. http://www.
cs.huji.ac.illogs/parallel/workload/logs.html.

[5] D. G. Feitelson, Rudolph, U. Schwiegelshohn, K. C. Sev-
cik, and Wong. Theory and practice in parallel job schedul-
ing. In Feitelson & Rudolph (Eds.), Job Scheduling Strate-
gies for Parallel Processing: IPPS ’95 Workshop, Springer
LNCS 949. 1997.

[6] R. Henderson and D. Tweten. Portable Batch System:
External reference specification. Technical report, NASA
Ames Research Center, 1996.

[7] V. L. J. Mache and K. Windisch. Minimizing message-
passing contention in fragmentation-free processor alloca-
tion. In Proceedings of the 10th International Confer-
ence on Parallel and Distributed Computing Systems, pages
120–124, 1997.

[8] D. Jackson, Q. Snell, and M. J. Clement. Core algorithms
of the maui scheduler. In JSSPP, pages 87–102, 2001.

[9] J. Kim, C. R. Das, and W. Lin. A top-down processor allo-
cation scheme for hypercube computers. In IEEE Transac-
tions on Parallel and Distributed Systems, volume 2, pages
20–30, 1991.

[10] P. Krueger, T. Lai, and V. Dixit-Radiya. Job scheduling
is more important than processor allocation for hypercube
computers. In IEEE Transactions on Parallel and Dis-
tributed Systems, volume 5, pages 488–497, 1994.

[11] V. Leung, E. Arkin, M. Bender, D. Bundee, J. Johnston,
A. Lal, J. Mitchell, C. Phillips, and S. Seiden. Processor
allocation on cplant: Achieving general processor locality
using one-dimensional allocation strategies. In Proceed-
ings of IEEE Intl. Conf. on Cluster Computing, 2002.

[12] K. Li and K. H. Cheng. A two-dimensional buddy sys-
tem for dynamic resource allocation in a partitionable mesh
connected system. Journal of Parallel and Distributed
Computing, 12:79–83, 1991.

[13] D. Lifka. The ANL/IBM SP scheduling system. In JSSPP,
pages 295–303, 1995.

[14] V. Lo, K. J. Windisch, W. Liu, and B. Nitzberg. Non-
contiguous processor allocation algorithms for mesh-
connected multicomputers. IEEE Transactions on Parallel
and Distributed Systems, 8(7):712–726, 1997.

[15] J. Mache, V. Lo, and S. Garg. Job scheduling that mini-
mizes network contention due to both communication and
i/o. In Proceedings of the 14th International Parallel and
Distributed Processing Symposium, 2000.

[16] P. Mohapatra, C. Yu, C. R. Das, and J. Kim. A lazy schedul-
ing scheme for improving hypercube performance. In Pro-
ceedings of the 1993 International Conference on Parallel
Processing, volume I - Architecture, pages I–110–I–117.
CRC Press, 1993.

[17] A. W. Mu’alem and D. G. Feitelson. Utilization, pre-
dictability, workloads, and user runtime estimates in
scheduling the IBM SP2 with backfilling. In IEEE Trans-
actions on Parallel and Distributed Computing, volume 12,
pages 529–543, 2001.

[18] R. Riesen, R. Brightwell, L. A. Fisk, T. Hudson, J. Otto,
and A. B. Maccabe. Cplant. In Proceedings of the Sec-
ond Extreme Linux Workshop at the 1999 USENIX Annual
Technical Conference, 1999.

[19] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY -
loadleveler API project. In JSSPP, pages 41–47, 1996.

[20] S. Zhou. LSF: Load sharing in large-scale heterogeneous
distributed systems, 1992.

[21] Y. Zhu. Efficient processor allocation strategies for mesh-
connected parallel computers. Journal of Parallel and Dis-
tributed Computing, 16:328–337, 1992.


